Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 10, 2026
-
Free, publicly-accessible full text available March 3, 2026
-
Free, publicly-accessible full text available April 25, 2026
-
Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)Open-ended learning environments (OELEs) involve high learner agency in defining learning goals and multiple pathways to achieve those goals. These tasks involve learners transitioning through self-regulated learning (SRL) phases by actively setting goals, applying different strategies for those goals, and monitoring performance to update their strategies. However, because of the flexibility, how learners react to impasses and errors has a critical influence on their learning. An intelligent pedagogical agent (IPA) continuously modeling learner activities could help support learners in these environments. However, this continuous comprehension of behaviors and strategies is difficult in OELEs with evolving goals, ill-defined problem structures, and learning sequences. In this paper, we draw from the literature on SRL phases and cognitive states to investigate the utility of two different methods, Sequence Mapping, and Hidden Markov Models, in building learner activity models from log data collected from a summer camp with 14 middle school girls in an open-design environment. We evaluate the effectiveness of these models separately, and combined, in identifying 7 states: Forethought, Engaged Concentration, Acting, Monitoring, Wheel Spinning, Mind Wandering, and Reflect and Repair. Lastly, we recommend dialogue intervention strategies for an IPA to support learning in OELEs.more » « less
-
Teaching is one of many professions for which personalized feedback and reflection can help improve dialogue and discussion between the professional and those they serve. However, professional development (PD) is often impersonal as human observation is labor-intensive. Data-driven PD tools in teaching are of growing interest, but open questions about how professionals engage with their data in practice remain. In this paper, we present ClassInSight, a tool that visualizes three levels of teachers’ discussion data and structures reflection. Through 22 reflection sessions and interviews with 5 high school science teachers, we found themes related to dissonance, contextualization, and sustainability in how teachers engaged with their data in the tool and in how their professional vision, the use of professional expertise to interpret events, shifted over time. We discuss guidelines for these conversational support tools to support personalized PD in professions beyond teaching where conversation and interaction are important.more » « less
-
null (Ed.)Engagement is critical to learning, yet current research rarely explores its underlying contextual influences, such as differences across modalities and tasks. Accordingly we examine how patterns of behavioral engagement manifest in a diverse group of ten middle school girls participating in a synchronous virtual computer science camp. We form multimodal measures of behavioral engagement from learner chats and speech. We found that the function of modalities varies, and chats are useful for short responses, whereas speech is better for elaboration. We discuss implications of our work for the design of intelligent systems that support online educational experiences.more » « less
An official website of the United States government

Full Text Available